Batch Coloring Tree-like Graphs

نویسندگان

  • Magnús M. Halldórsson
  • Hadas Shachnai
چکیده

Batch scheduling of conflicting jobs is modeled by batch coloring of a graph. Given an undirected graph and the number of colors required by each vertex, we need to find a proper batch coloring of the graph, i.e., partition the vertices to batches which are independent sets, and to assign to each batch a contiguous set of colors, whose size equals to the maximum color requirement of any vertex in this batch. When the objective is to minimize the sum of job completion times, we get the batch sum coloring problem; when we want to minimize the maximum completion time of any job (or, the makespan) we get the max coloring problem. Given the hardness of batch coloring on general graphs, already for the special case of unit length jobs (our problems then reduce to sum coloring and the classic graph coloring problem, respectively), it is natural to seek out classes of graphs where effective solutions can be obtained efficiently. In this paper we give the first polynomial time approximation schemes for batch sum coloring on tree-like graphs, as well as for planar graphs. For the max-coloring problem, we improve upon previous results for several classes of tree-like graphs, as well as for perfect graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Batch Coloring Flat Graphs and Thin

Batch scheduling of conflicting jobs is modeled by batch coloring of a graph. Given an undirected graph and the number of colors required by each vertex, we need to find a proper batch coloring of the graph, namely, to partition the vertices to batches which are independent sets and assign to each batch a contiguous set of colors, whose size is equal to the maximum color requirement of any vert...

متن کامل

Equitable and semi-equitable coloring of cubic graphs and its application in batch scheduling

In the paper we consider the problems of equitable and semi-equitable coloring of vertices of cubic graphs. We show that in contrast to the equitable coloring, which is easy, the problem of semi-equitable coloring is NPcomplete within a broad spectrum of graph parameters. This affects the complexity of batch scheduling of unit-length jobs with cubic incompatibility graph on three uniform proces...

متن کامل

Animation Visualization for Vertex Coloring of Polyhedral Graphs

Vertex coloring of a graph is the assignment of labels to the vertices of the graph so that adjacent vertices have different labels. In the case of polyhedral graphs, the chromatic number is 2, 3, or 4. Edge coloring problem and face coloring problem can be converted to vertex coloring problem for appropriate polyhedral graphs. We have been developed an interactive learning system of polyhedra,...

متن کامل

-λ coloring of graphs and Conjecture Δ ^ 2

For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...

متن کامل

On Improved Time Bounds for Permutation Graph Problems

On improved time bounds for permutation graph problems p. 1 A simple test for interval graphs p. 11 Tolerance graphs and orders p. 17 Scheduling and Related Problems On scheduling problems restricted to interval orders p. 27 Scheduling with incompatible jobs p. 37 Generalized coloring for tree-like graphs p. 50 Parallel and Distributed Algorithms I Optimal (parallel) algorithms for the all-to-a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007